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Abstract-Analytical solutions for transient fully developed natural convection in open-ended vertical 
concentric annuli are presented. Four fundamental boundary conditions have been investigated and the 
corresponding fundamental solutions are obtained. These four fundamental boundary conditions are 
obtained by combining each of the two conditions of having one boundary maintained at uniform heat 
flux or at uniform wall temperature with each of the conditions that the opposite boundary is kept 
isothermal at the inlet fluid temperature or adiabatic. An expression for the transient Nusselt number is 
given for each case. These fundamental solutions may be used to obtain solutions satisfying more general 

thermal boundary conditions. 

INTRODUCTION 

UNSTEADY laminar free convection in vertical con- 

centric annuli is of interest in several engineering 
applications, such as the early stages of melting and 
in transient heating of insulating air gaps by heat input 
at the start-up of furnaces. Also, unsteady laminar 
free convection is likely to find wider use as it could 
provide the flow mechanism in some types of solar 
heating and ventilating passive systems. In modern 
electronic equipment, the vertical circuit boards 
include heat generating elements, and this situation 
can be modelled by parallel heated plates with upward 
flow in the intervening space. Examples of other appli- 
cations which may be simulated by such a model are 
the external surface of electric transformers, small 
domestic mobile winter oil heaters and some types of 
radiators of hydronic heating systems. 

The annular geometry is widely employed in the 
field of heat exchangers. A typical application is that 
of gas-cooled nuclear reactors, in which cylindrical 
fissionable fuel elements are placed axially in vertical 
coolant channels within the graphite moderator, the 
cooling gas flowing along the annuli parallel to the 
fuel elements. 

There has been greatly increased interest and 
research activity in natural convection. Gebhart et al. 
[I] reviewed this research activity. Unsteady devel- 
oping laminar free convection in vertical parallel 
plates has been numerically investigated by Joshi [2], 
Lee et al. [3], Yang et al. [4] and Kettleborough 
[S]. Wang [6] has analytically considered the fully 
developed transient free convection between vertical 
plates with periodic heat input. Unsteady laminar free 
convection in a two-dimensional enclosure is solved 
using the scaling analysis of Patterson and Imberger 
[7]. Steady developing laminar natural convection in 

vertical concentric annuli has been studied by El- 
Shaarawi and Sarhan [8], El-Arabi et al. [9] and 
Oosthuizen and Paul [IO]. Many studies [I I, 121 pro- 
vided analytical solutions for steady fully developed 
free convection flows in vertical annuli. Different ther- 
mal configurations are considered in these studies. 
However, all of them use boundary-layer assump- 
tions, which are applicable at large Rayleigh numbers. 
The obtained results show that at relatively low Ray- 
leigh number, or sufficiently large height to gap width 
ratios (I/b), fully developed conditions can be achieved 
before the fluid reaches the annulis exit cross-section. 

Fully developed free convection flows are obtained 
when the inertia forces vanish and a balance is 
attained between the pressure and gravitational forces 
on the one hand and the viscous forces on the other 
hand. The study of such flows gives the limiting con- 
ditions for developing flows and provides an ana- 
lytical check on numerical solutions. The lack of ana- 
lytical solutions for transient fully developed laminar 
natural convection in vertical concentric annuli, with 
different thermal boundary conditions, motivated the 
present work. The purpose of this paper is to present, 
in closed forms. transient fully developed free con- 
vection solutions, corresponding to four fundamental 
thermal boundary conditions, in vertical concentric 
annuli. 

GOVERNING EQUATIONS AND BOUNDARY 

CONDITIONS 

We consider unsteady laminar fully developed free 
convection flow inside a vertical concentric annulus 
of a finite length (I), as shown in Fig. I, immersed in 
a stagnant fluid of infinite extent maintained at a 
constant temperature r,,. The fluid inside the annulus 
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NOMENCLATURE 

b annular gap width, r? - r, RU Rayleigh number, Gr PI 

CP specific heat of fluid at constant pressure RU* modified Rayleigh number, Gr* Pr 
D equivalent (hydraulic) diameter of t dimensionless time, rk/pcr z 

annulus, 2b i time 

r” 

diameter of heat transfer boundary T fluid temperature at any point 
volumetric flow rate, J:: 2aru dr T, initial fluid temperature 

F dimensionless volumetric flow rate, L mixing cup temperature, 

/WY Gr*) @Tdr/J$dr 

9 gravitational body force per unit mass TO fluid temperature at channel entrance 
Gr Grashof number, &-g(T,.- To)D3/y’ in T, reference temperature 

the case of an isothermal boundary or TW temperature of the wall 
fgyD4/2ky’ in the case of uniform heat IA axial velocity component at any point 
flux (UHF) heat transfer boundary, (I dimensionless axial velocity, uri/(ly Gr*) 
the plus and minus signs apply to upward z axial coordinate 
(heating) and downward (cooling) Z dimensionless axial coordinate, z/(lGr*). 
flows, respectively. Thus Gr is a positive 
number in both cases Greek symbols 

Gr* modified Grashof number, D Gr/l constant appearing in equation (7) 
I1 heat transfer coefficient ; volumetric coefficient of thermal 
k thermal conductivity of fluid expansion 
1 height of annulus B. eigenvalues 
L dimensionless height of annulus, l/Gr* Y kinematic viscosity of fluid, p/p,, 
N annulus radius ratio, r ,/r2 0 dimensionless temperature, 
Nu local Nusselt number, (T- T,)/( T,- T,) in the case of an 

D(~TI~rhJ(Tw-- TO) isothermal heat transfer boundary and 
Kl average Nusselt number, Jb Nudz/l (T- T,)/(qD/2k) for UHF boundary 

P pressure of fluid inside the channel at any 0, dimensionless mixing cup temperature, 
cross-section (T,,, - T,)/( T, - To) in the case of an 

P’ pressure defect at any point, p-p. isothermal heat transfer boundary and 

PO pressure of fluid at the channel (T,,, - T,)/(qD/Zk) for UHF boundary 
entrance 0, dimensionless reference temperature, 

PI hydrostatic pressure, pogz (T, - T,)/( T, - To) in the case of an 
P dimensionless pressure defect at any isothermal heat transfer boundary and 

point, p’r~/po12y2 Gr*’ (Tr- T,)/(qD/Zk) for UHF boundary 
Pr Prandtl number, pc,,/k 0, dimensionless wall temperature, 

4 heat flux at the heat transfer surface, (T,,,-T,)/(T,-To) = 1 in thecaseof 
q = f  k(i?T/&), where the minus and an isothermal heat transfer boundary 
plus signs are, respectively, for heating and (T,- To)/(qD/2k) for UHF 
and cooling in case (I). These signs boundary 
should be reversed in case (0) 1” eigenvalues 

r radial coordinate P dynamic viscosity of fluid 
rl inner radius of annulus P fluid density at temperature T, 
r2 outer radius of annulus PO(~ -B(T- ToI) 
R dimensionless radial coordinate, r/r2 PO fluid density at To. 

initially has the temperature To, and suddenly, at least 
one of the annular walls is heated or cooled so that its 
temperature is different from the ambient temperature 
To. Due to fully developed flow assumptions the fluid 
enters the part of the annular passage under con- 
sideration with an axial velocity profile which remains 
invariant in the entire channel (i.e. au/az = 0). The 
fluid is assumed to be Newtonian, enters the channel 
at the ambient temperature To, and has constant 

physical properties, but obeys the Boussinesq 
approximation according to which its density is con- 
stant except in the gravitational terms of the vertical 
momentum equation. Viscous dissipation and inter- 
nal heat generation are absent. 

Under the above mentioned assumptions and using 
the dimensionless parameters given in the Nomencla- 
ture, the equations of continuity, motion and energy 
reduce to the following two simultaneous non-dimen- 
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FIG. I. Schematic diagram. 

Pr 

16(1 -N)‘(‘-Or) 

(1) 

d0 
z+UPrg=i& I?: [ 1 (2) 

where 0, is a reference temperature which is equal to 
zero for an open-ended channel and which can be 
determined from the condition of zero net flow for a 
closed-ended channel. 

Two initial conditions and four boundary con- 
ditions are therefore needed to obtain a solution for 
the above two equations. The two initial conditions 
are 

cJ(O,R) = O(O,R,Z) = 0. (3) 

The two boundary conditions related to (I are 

U(t,l) = U(t,N) = 0. (4) 
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On the other hand, there are many possible thermal 
boundary conditions applicable to the annular con- 
figuration. In the present paper, the non-dimensional 
parameters used in the formulation of the problem 
are chosen to suit annuli having their two boundaries 
at two different heat fluxes (q, and q?) or at two 
different uniform temperatures (T, and TJ or annuli 
under one of four fundamental boundary conditions. 
These four fundamental boundary conditions are 
obtained by combining each of the two conditions 
of having one boundary maintained at uniform wall 
temperature or at specified heat flux with each of 
the conditions that the opposite boundary is kept 
isothermal at the inlet fluid temperature (T,) or adia- 
batic (aT/ar = 0). 

With the two boundaries of an annulus maintained 
at UHF (uniform heat flux) conditions, if q, refers to 
the higher heat flux then q, will be at the hotter wall 
in the case of heating and at the cooler wall in the case 
of cooling. Similarly, when the two boundaries of an 
annulus are kept isothermal, T, refers to the wall 
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which has the larger temperature difference from r,. GENERAL ANALYSIS 

Thus, T, is the temperature of the hotter wall in the 
case of heating the two boundaries and of the cooler 

Substituting 0 from equation (I) into equation (2), 

wall in case of cooling both boundaries. 
we obtain 

From the previous discussion it may be seen that d2u Pr S a2u 
there are many thermal boundary conditions appli- 

-4 4 at?- R JR RalaR 
cable to the annulus geometry. However, under cer- 
tain conditions, the energy equation (2) becomes lin- 
ear and homogeneous in D (e.g. when aO/aZ is 
constant), and then any linear combination of solu- 
tions will be a solution. It may then be possible to 
develop certain special or fundamental solutions to 
this equation satisfying particular or specific bound- 
ary conditions, which can be combined to satisfy any 
other boundary conditions. This method is known as 
the method of superposition. Reynolds ef ul. [I31 
defined four fundamental boundary conditions which 
produce four fundamental solutions to the energy 
equation (2) when it becomes linear. For the sake of 
completeness, these fundamental solutions are stated 
hereinafter. 

(I) Fundamental solution of the first kind, which 
satisfies the boundary conditions of a temperature 
step change at one wall, the opposite wall being kept 
isothermal at the inlet fluid temperature. Using the 
present notation, this corresponds to 0 = I at one wall 
and 0 = 0 at the opposite wall for I > 0, where the 
boundaries are kept at the inlet fluid temperature, 

I a 
R dR 

$&-Pr&(;&(R~))]}. 

(5) 

A solution of equation (5) in the form II = U(f, R) is 
only possible if 

and 

Integrating equation (6) with respect to time yields 

from which 

a?P T@ = F’(Z) = a(t). 
0 = 0 for f  > 0 for all cases. 

(2) Fundamental solutions of the second kind But F’(Z) is independent of time, and as a result 

which satisfy the boundary conditions of a step change a?p 
in heat flux at one wall, the opposite wall being adia- ---a az2 - (10) 
batic. Using the present notation, this corresponds to 
aO/aR = - I/( I -N) at the inner wall and aO/aR = 0 where LX is constant. Equation (IO) gives the solution 
at the outer wall or dO/dR = 0 at the inner wall and for P as 
aO/dR = I/( I --N) at the outer wall for r > 0. 

(3) Fundamental solutions of the third kind which 
P = 0.5clZ2+pZ+6(t). (11) 

satisfy the boundary conditions of a temperature step Applying the conditions, for an open-ended channel, 
change at one wall, the opposite wall being adiabatic. that P = 0 at both inlet and exit (i.e. at Z = 0 and L), 
This corresponds to 6 = I at one wall and &3/aR = 0 gives 
at the opposite wall for t > 0. 

(4) Fundamental solutions of the fourth kind P = OSaZ(Z-L). (12) 
where a step change in heat flux at one wall is applied From equation (1) we have 
while the opposite wall being kept isothermal at the 
inlet fluid temperature. This corresponds to 
aO/aR = - I/( I -N) at the inner wall while 0 = 0 at 

g = 16c((l -N)4 (13) 

the outer wall or 0 = 0 at the inner wall and 
dO/aR = I/( I -N) at the outer wall for t > 0. 

With any of the above mentioned boundary 
conditions, the boundary opposite to that maintained 
adiabatic (i.e. aO/aR = 0) or isothermal (i.e. 6 = 0) is 
termed the heat transfer boundary (even though there 
is transfer of heat through a boundary maintained at 
0 = 0). For each of the above fundamental solutions, 
two cases are considered, namely, case (I), in which 
the heat transfer boundary is at the inner wall and 
case (0) in which the heat transfer boundary is at the 
outer wall. The aim of the present paper is to obtain 
the above mentioned four fundamental solutions. 

which means that, for a given R in a given annulus, 
the dimensionless temperature 0 varies linearly with 
the axial distance Z. This implies that the assumption 
of a hydrodynamically fully developed free convection 
flow should necessarily mean that the flow is also 
thermally fully developed, regardless of the value of 
the Prandtl number (Pr). In other words, for free 
convection flows in a vertical annulus, the thermal 
development length is shorter than or at most equal 
to that of the hydrodynamic development length, 
irrespective of the value of the Prandtl number. How- 
ever, in pure forced convection flows, such a result is 
only obtained if Pr < I. 
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As a result of the conclusion that a is constant, region, with the dimensionless axial distance Z, the 
equation (5) is reduced to above equation is differentiated with respect to Z. 

Since U is independent of Z. this gives 

which, on substituting for C;O/CZ from equation (13) 

(14) into the above equation, yields 

The governing equations (l)-(2) can be simplified if SO, 
one of the two annulus boundaries is kept isothermal. - = 16a(I -N)J. 

az 
In order to satisfy this boundary condition, 0 must. 
in this particular case, be independent of Z. Thus, it Integrating equation (21) with respect to Z between 

is concluded that LX must, in such a case, equal zero. annulus entrance and exit, taking into consideration 

Therefore, equations (12) and ( 13) reduce, in this case, that U,, = 0 at Z = 0. results in 

to the following equations, respectively ; 0, = 16a(l -N)“Z. (22) 

P=O (15) Using the dimensionless parameters given in the 
a0 
- = 0. (16) 

Nomenclature. the following expressions for the local 

dZ Nusselt number can easily be obtained : For a UWT 

For a closed-ended annulus which has at least one of - 

its boundaries at constant wall temperature, inte- Nu= &2(1---N) $ 
( > 

(23) 
w 

grating equation (6) once, yields 
and for a UHF boundary 

and for this case the term Pr (sP/aZ). in equation (I), 
can be combined with 0,. 

2(1-N) a0 2 
NM=*- - (24) 

0, ( >-- 8R ,v 0, 

Equation (16) states that, in a case with an iso- 
where the minus and plus signs apply respectively for 

thermal boundary, the fully developed temperature 
cases (I) and (0) when there is heating and vice versa 

profile is a function of R and I only. On the other 
when there is cooling. 

hand, equation (15) states that the fully developed 
From equation (I) it can be seen that (riO/dR) is a 

pressure inside an open-ended annulus of an iso- 
function of R and T only which is dependent on the 

thermal boundary is equal to the hydrostatic pressure, 
fully developed axial velocity profile (U), i.e. it is 

at the same elevation, outside the annulus. This 
independent of Z. Hence, for a case with a UWT 

implies that, in such a fully developed case with an 
boundary, equation (23) shows that the fully 

isothermal boundary, there would be no pressure drop 
developed local Nusselt number is a function of time 

due to fluid viscous drag since this latter is just offset 
only. Consequently, the fully developed average Nus- 

by the buoyancy driving force. If  the two governing 
selt number is, in this case (UWT), independent of 

equations (1) and (2) are solved for the velocity and 
annulus height L. On the other hand, for boundary 

temperature profiles (U and 0) then the following 
conditions other than (UWT), provided that the flow 

useful parameters can be evaluated. The dimen- 
is hydrodynamically fully developed, equation (I 3) 

sionless volumetric flow rate (F) can be evaluated 
shows that the temperature varies linearly with Z. 

from the following equation : 
Hence, equation (24) shows that the fully developed 
local Nusselt number, for this case, varies hyper- 

S’ 

bolically with Z. 
F=2 RUdR. (18) 

N It is important to mention here that, in order to 
maintain the validity of the hydrodynamic fully 

Since for a fully developed flow U is a function of R developed flow assumption, the only thermal bound- 
and I only, it follows that the definite integral on the ary conditions accepted, other than the UWT bound- 
right-hand side of equation (18) and hence F are ary conditions, are those that vary linearly with Z. As 
functions oft only regardless of the value of the axial a result, all the problems which include boundary 
coordinate Z, i.e. they are not related to the value of conditions other than the UWT can be considered as 
the annulus height. The dimensionless mixing cup fundamental problems of the second kind. 
temperature is given by 

0, = J; RUOdR/j+N’ RUdR. (19) FUNDAMENTAL SOLUTIONS 

I f  at least one of the two annulus boundaries is kept 
To find the variation of 0,, in the fully developed flow isothermal. eauations (1) and (2) are reduced to . ., ., 
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Pf 
16(1 -N)4 (0-b) n= I 

ae I a ae 
dr=RaR [ 1 RaR (26) where 

+C2Yo(J.,R)+F(R)]e-“f’ (36) 

Equation (26) assumes a solution in the form F(R) = 0.25a~,,A,R2Jo(&R){ 1 Y:(I,R) + Y&R)] 

o(t, R) = t3,(t, R)+&(R) (27) 
-E,[J,(1,,R)Y,(1,,R)+J,(~,R)Y,(I,R)IJ 

where O,(R) accounts for the nonhomogeneousity in 
+0.257&4,R2Y,,(A,,R){-[J,(A,,R)YI(l,R) 

the boundary conditions. The solution of the homo- +JdU) Y,(M)1 +W:(UV +J;(M)lJ (37) 
geneous part is obtained by the separation of variables where En = Y,(&)/J,,(L,,) and the constants C, and 
as C2 are given as 

cc 

6,(t,R) =-E A,e-“l’[Y,(~,R)-C,J,(I,R)] 
,,’ I 

and 

(28) C,=AJA i=1,2 (38) 

where 

A, = -F(N)Y,(i,,,)+F(l)Y,(N~,) (39) 

S’ -o2(R)R[Y,(I,R)-C,,J,(I,,R)ldR 
A,= N 

s 

, (29) 
R[Y,(i,,R)-C,J,(1,R)12dR 

N 

where B2(R), C,, and A,, depend on the kind of fun- 
damental case we have. Now, equation (2.5) assumes 
a solution in the form 

A2 = -F(I)J,(N~,)+F(N)J,(L,,) (40) 

and A = JOWL) Yd&) -Jo(k) YOWL). 
It is worth mentioning that we add the homo- 

geneous solution of equation (35) to the particular 
solution in order to force UpI to satisfy the boundary 
conditions. Now, Up2 is the solution of 

Wt, RI = G,(tr RI + Up, (t, R) + U&R) + U,,(R) 

(30) 

where Cl,, is the solution of 

auh ia __-- 
at [ 1 Rav, =fJ 

R aR aR (31) 

$ & R% = -Bz(R) [ 1 (41) 

and as a result, Upz depends on the fundamental case 
associated with the given thermal boundary 
conditions. Up, is the solution of 

;i& R!$ = [ 1 f-t 
16(1 -iV)4 (42) 

which has the solution 
which has the solution 

CJ,,(t. R) = f  D,,e- 
4 

“‘[Y,(B,,R)-B,Jo(B,,R)l U,3(R) = 16(, -N)4 (R2-l)+(bN2)~N . 1 “= I 
(43) 

(32) 

where /?:,s are the roots of 
The determination of B,(R), C,, 1,, and Up2 depends 
on the kind of thermal boundary condition and this 

Y,MJ - WO(P”) = 0 (33) 
will be the subject of the following sections. 

4, = YoVPnWoW~,,), and FUNDAMENTAL SOLUTIONS OF THE FIRST 

I 
’ 

KIND 

- W,, (0, RI + U&Y 
N In this case, the two boundaries of the annulus are 

kept isothermal, one of which is at the inlet ambient 
D, = + ~,,(RW,(B,,R) --BnJ,WOI dR 

S’ 

. (34) fluid temperature r,(0 = 0) while the opposite 

RP’dPA - Wo(P,tR)l* dR boundary is at a higher or a lower temperature. The 
N following thermal boundary conditions can be 

U,,, is the solution of 
applied : 

Case (I) : temperature step at the inner wall while 
aup, I a aup, [ 1 @,(t,R) 
at R dR Rx = 16(1 -N)4’ (35) 

the outer wall is kept at the ambient temperature, i.e. 

o(t, 1) = 0, e(t,N) = 1, t > 0. 
The solution of equation (35) can be obtained by the Case (0) : temperature step at the outer wall while 
variation of parameters method as the inner wall is kept at the ambient temperature, i.e. 



O(r,N) = 0, O(f, 1) = I, t > 0. 

The evaluation of the required parameters is as fol- 
lows : 

Case (I) : the eigenvalues 1,, are the roots of 

YdNU - C,,J,(N~“) = 0 (44) 

where C, = Y,(,$,)/J,(&), and 

In R 
@I(R) = InN. 

A,, can be evaluated from equation (29) as 

(45) 

A, = &NM In R(C,,J, (Ml - YI(AR)) 
” 

+ (C,,Jo(UO - YoV.,R))l,: (46) 

where 

M = {0.5R’[l,f Y;(I,R) + Y;(&,R)] 

+0.5C,SR2[~,;J;(~,R)+J;(I,R)] 

- CnR2[AfJ, (AR) Y, &R) 

+J&nR) YoWW,:. (47) 

Substituting for 0?(R) in equation (41), we get 

Up,(R) = - ,;‘, PIInR-l]+B,lnR+B, (48) 

where B, = [N’(ln N- 1) + 1]/(4(ln N)2) and B2 = 
- 1/(4ln N). Closed form expressions for the volume 
flow rate F and for the non-dimensional mixing cup 
temperature O,, defined by equations (18) and (19), 
are not possible. However, these parameters can be 
evaluated numerically. It may be worth mentioning 
that, in the present case of isothermal boundaries, the 
temperature (3 (and hence 0,) does not vary with axial 
distance Z. Thus &,, = 0, This means that the heat 
transferred to/from the fluid through the two bound- 
aries of the annulus, under the fully developed flow 
conditions, does not affect the fluid bulk temperature 
since they are equal and opposite (in order that fully 
developed conditions can be achieved in such a case). 
Expressions for the fully developed Nusselt number 
(local and also average) are obtained after getting the 
temperature gradient at the walls from equation (27) 
and then substituting in equation (23). The value of 
Nu on the inner wall is given as 

Nu,(f) = +2(1-N) 
[i 

f  l,,A,e-‘ir[- Y,(L,N) 
“= I 

+ GJ, M’)l I 1 + kN (49) 

where the minus and plus signs apply respectively for 
heating and cooling. 

Case (0) : the eigenvalues 1, are still given by equa- 
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In R 
O,(R) = I- InN (50) 

A,, = AN [AR In N(GJl (M) 
II 

- Y,(L,R))+(i,,Rln RY,(l,R)+ Y,(L,,R)) 

-C,,(I,RIn RJ,(1,,R)+J,(1,,R))l~ (51) 

where M is given by equation (47). Substituting for 
O,(R) in equation (41), we get 

U,dR) = 4;2N ---[InR-(l+lnN)]+B,lnR+Bz 

(52) 

where B, = [N2-- I -In N]/(4(ln N)‘) and El = 
(1 + In N)/(4 In N). The expression for Nu on the outer 
wall is given as 

Nu,(r) = &2(1-N) 
I 

f  L,,A,,e-“I’[--Y,(i,,) 
,a= I 

+c”J,(~,,)l 1 1 - kN . (53) 

A sample of the results is plotted in Figs. 24. These 
figures represent the thermal and the hydrodynamics 
steady state behavior of the fluid for both (I) and (0) 
cases. As is clear from equations (45), (48)-(50), (52) 
and (53), the steady state behavior of the annulus is 
the same as that predicted in ref. [ 121. 

FUNDAMENTAL SOLUTIONS OF THE 
SECOND KIND 

In this case, one of the annulus boundaries is main- 
tained at a constant heat flux (y) and the opposite 
boundary is perfectly insulated. The governing equa- 
tions in such a case are equations (1) and (2) where 
?X?/aZ # 0. We are unable to get a closed form solu- 
tion for this case. 

FUNDAMENTAL SOLUTIONS OF THE THIRD 

KIND 

In this case, since one of the boundaries is 
isothermal, equations (25) and (26) are the governing 
equations subject to the following boundary con- 
ditions : 

Case (I) : temperature step at the inner wall while 
the outer wall is kept insulated, i.e. 

aw, 1) 
- = 0, 

aR 
e(f, N) = 1 f  > 0. (54) 

tion (44) and 
Case (0) : temperature step at the outer wall while 

the inner wall is kept insulated, i.e. 
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FIG. 2. The dimensionless temperature distribution in the radial direction. 
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FIG. 3. The dimensionless axial velocity distribution in the radial direction. 
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FIG. 4. The variation of Nu with the inner to outer radius ratio N 

aw, N) 
~ = 0, O(t, 1) = 1 

aR 
I > 0. (55) 

O?(R) = 1. (62) 

A,, is given by equation (58) but with the new value 
The solutions obtained are as follows of C,,. Also, U,,? is given by equation (59). The local 

Case (I) : the eigenvalues ,I,, are the roots of Nusselt number on the outer wall is given as 

y, GL) - CJ, (4,) = 0 

where C,, = Y,(N&)/J,(NL,,) and 

B?(R) = 1 (57) +C,,J,(i.,,)l 

4 = &KJ, (AR) - Y, WWl,h 
1 

(63) 

(58) 
,, Note that in both cases (I) and (0) the value of Nu 

where M is given by equation (47). The expression for on the insulated wall is zero. 

U,,(R) is given as 

Up2(R)= -T+B,lnR+B, (59) FUNDAMENTAL SOLUTIONS OF THE 
FOURTH KIND 

where B, = [N’- 1]/(4ln N) and Bz = l/4. The local 
Nusselt number on the inner wall is given as 

In this case, since one of the boundaries is 
isothermal, equations (25) and (26) are the governing 
equations subject to the following boundary con- 

Nu,(t) = &2(1--N) f  &A,,e-‘I’[- Y,(l,,N) ditions : 
“= I 

Case (I) : step change in heat flux at the inner wall 

+GJ,bLN)1 . I (60) while thkoute; wall is isothermal at the inlet fluid 
temperature, i.e. 

Case (0) : the eigenvalues I,, are the roots of am, N) ~ = - l/(1 -N), 0(r, I) = 0 f > 0. (64 
YI 0%) -Cd, WA) = 0 (61) aR 

where C,, = YdUIJdU, and Case (0) : step change in heat flux at the outer wall 
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while the inner wall is isothermal at the inlet fluid 
temperature, i.e. 

fmf, 1) 
~ = I/( I -N), 

dR 
O(r, N) = 0 I > 0. (65) 

The solutions for both cases are given as : 

Case (I) : the eigenvalues 1, are the roots of 

y, (NA,) - w, (Nh,) = 0 (66) 

where C,, = Ydi,J/J&,,), and 

NlnR 
O?(R) = - I-N 

N 

An = I,fM(N- I) 
[AR In R(C,,Jl (&R) - Y, (AR)) 

+(CnJ&,,R) - YdU))I; (68) 

U,,(R) = - G{GN(l-InR) 

+B, In R+B, (69) 

where 

and 

B, = [I +N’(ln N- 1)]/(4(ln N)‘) 

B2 = - 1/(4ln N). 

The value of Nu on the inner wall is given as 

Nu,(t) = 
2 

@,(t,W+~2V’) 
(70) 

where 0, (t, N) and B,(N) are given by equations (28) 
and (67), respectively. 

Case (0) : the eigenvalues 1, are the roots of I. 

Yl (A”) - WI (A,) = 0 

where C,, = Y,(NL,,)/J,(NL,,) and 

In! 

Q,(R) = gN 

(71) 

(72) 

I 
An = I,‘M(l-N) VJ In N( - ‘3, (M) 

+ Yl(M))- {Mln R(-GJ,(AJV+ Y,(UO) 

+(-CJd4R)+ Y,WW)I~ (73) 

1 
up2(R)=4(1-N)lnN {InN(l+InN)(R*-1) 

+(I-N*-lnN(R*-1))InR) (74) 

and Nuo on the outer wall is given as 

Nu,(t) = 
2 

-w, l)+e,(l) 
(75) 

where O,(f, 1) and B?(l) are given by equations (28) 
and (72), respectively. 

CONCLUSIONS 

Analytical solutions for transient fully developed 
upward (heating) or downward (cooling) natural con- 
vection velocity and temperature profiles in open- 
ended vertical concentric annuli have been obtained. 
These solutions correspond to four fundamental 
boundary conditions obtained by combining each of 
the two conditions of having one boundary main- 
tained at UHF or at UWT with each of the conditions 
that the opposite boundary is kept adiabatic or iso- 
thermal at the inlet fluid temperature. Expressions 
for the local Nusselt number are presented for each 
considered case. Such fully developed values are 
approached, in a given annulus, when the Rayleigh 
number (Ra) attains a considerably low value or when 
the height to gap width ratio (I/b) is sufficiently large. 
These values represent the limiting conditions and 
provide analytical checks on numerical solutions for 
transient developing flows. 

Once a developing natural convection flow reaches 
a state of full development in a given annulus, the 
volumetric flow rate reaches its upper value; any fur- 
ther increase in the annulus height would not produce 
an increase in the volumetric flow rate. Moreover, for 
cases with an isothermal boundary, in a given annulus, 
the Nusselt number and the mixing cup temperature 
remain constant spacewise, but vary with time, irres- 
pective of any further increase in the annulus height. 
However, for cases with two UHF boundary 
conditions, in a given annulus, we are unable to get a 
closed form solution. 
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4. 

5. 
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I. 
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